What is #int \ 1/((1+tanx)^2+1) \ dx#?
1 Answer
Explanation:
Let:
# I= int \ 1/((1+tanx)^2+1) \ dx #
Expanding the denominator gives:
# I = int \ 1/(1+2tanx+tan^2x+1) \ dx #
# \ \ = int \ 1/(tan^2x + 2tanx + 2) \ dx #
Because
# I = int \ 1/(tan^2x + 2tanx + 2) \ sec^2x/(1+tan^2x) \ dx #
Now we can simplify the integrand by using the substitution:
# t = tan x => (dt)/dx = sec^2x #
Which gives us:
# I = int \ 1/((t^2 + 2t + 2)(1+t^2)) \ dt #
Therefore we have transformed the integral into a simpler problem which can be solved by decomposing the new integrand into partial fraction. I will omit the partial fraction decomposition, bt the resulting expansion is:
# I = int \ (2t+3)/(5(t^2+2t+2)) - (2t-1)/(5(t^2+1)) \ dt #
# \ \ = 1/5 \ int \ (2t+3)/(t^2+2t+2) - (2t-1)/(t^2+1) \ dt \ \ ..... (star)#
Consider the first part of the integral
# int \ (2t+3)/(t^2+2t+2) \ dt = int \ (2t+2 + 1)/(t^2+2t+2) \ dt #
# " " = int \ (2t+2)/(t^2+2t+2) +1/(t^2+2t+2) \ dt#
# " " = int \ (2t+2)/(t^2+2t+2) +1/((t+1)^2+1) \ dt#
# " " = ln|t^2+2t+2| + arctan(t+1)#
# " " = ln(t^2+2t+2) + arctan(t+1)#
And for the second part of the integral
# int \ (2t-1)/(t^2+1) \ dt = int \ (2t)/(t^2+1) -1/(t^2+1) \ dt #
# " " = ln|t^2+1| - arctant #
# " " = ln(t^2+1) - arctant #
Note that in both cases the modulus signs can be removed as the logarithmic arguments are both positive.
Combining our results into
# I = 1/5 {ln(t^2+2t+2) + arctan(t+1)} + ln(t^2+1) - arctant} + C#
Restoring the substitution then gives s:
# I = 1/5 {ln(tan^2x+2tanx+2) + arctan(tanx+1)} + ln(tan^2x+1) - arctantanx} + C#
# \ \ = 1/5 {ln(tan^2x+2tanx+2) + arctan(tanx+1)} + ln(tan^2x+1) - x} + C#