Question #cc28c

1 Answer
Apr 4, 2017

# =(x - 1/2) sin^(-1) sqrtx - sqrt(x(1-x)) + C#

Explanation:

To do this, I think you will need to realise that:

#int 1/(sqrt(1-t^2)) dt = sin^(-1) t + C implies d/dt ( sin^(-1) t) = 1/(sqrt(1-t^2))#

So

#int sin^(-1) sqrt x \ dx#

# = int (x)^prime sin^(-1) sqrtx \ dx#

And by IBP

# =x sin^(-1) sqrtx - int x ( sin^(-1) sqrt x)^prime \ dx#

# =x sin^(-1) sqrtx - int x 1/sqrt(1-x) (sqrtx)' \ dx#

# =x sin^(-1) sqrtx - 1/2color(red)( int sqrtx /sqrt(1-x) \ dx) qquad triangle#

For the red bit, if we let #x = sin^2 y, dx = 2 sin y cos y dy#, we have:

# int sqrtx /sqrt(1-x) \ dx = int siny /sqrt(1- sin^2 y) \ 2 sin y cos y \ dy#

#= int 2 sin^2y \ dy#

From the double angle formula:

#= int 1 - cos 2y \ dy#

#= y - 1/2 sin 2y + C#

Reversing out of the sub:

#= sin sqrt x - 1/2 sin (2 sin^(-1) sqrtx) + C#

Again a double angula formula for middle term:

#= sin sqrt x - sin ( sin^(-1) sqrtx) cos ( sin^(-1) sqrtx) + C#

#= sin sqrt x -sqrtx sqrt(1-x) + C#

If we park this back in #triangle#:

# =x sin^(-1) sqrtx - 1/2(sin sqrt x - sqrt(x(1-x)) + C)#

# =(x - 1/2) sin^(-1) sqrtx - sqrt(x(1-x)) + C#