What is the integral of #int secxln(secx + tanx) dx#?

1 Answer
Apr 8, 2017

The integral equals #1/2ln^2(secx + tanx) + C#

Explanation:

Let #u = ln(secx + tanx)#. Then by the chain rule we have

#du = (secxtanx + sec^2x)/(secx + tanx)dx# and #dx = (secx + tanx)/(secxtanx + sec^2x)du#

We now have, calling the integral #I#:

#I = int secx * u * (secx + tanx)/(secxtanx + sec^2x)du#

If we do a little factoring we get:

#I = int secx * u * (secx + tanx)/(secx(tanx + secx)) du#

#I = int u du#

#I = 1/2u^2 + C#

#I = 1/2ln^2(secx + tanx) + C#

Hopefully this helps!