What is the integral of #int secxln(secx + tanx) dx#?
1 Answer
Apr 8, 2017
The integral equals
Explanation:
Let
#du = (secxtanx + sec^2x)/(secx + tanx)dx# and#dx = (secx + tanx)/(secxtanx + sec^2x)du#
We now have, calling the integral
#I = int secx * u * (secx + tanx)/(secxtanx + sec^2x)du#
If we do a little factoring we get:
#I = int secx * u * (secx + tanx)/(secx(tanx + secx)) du#
#I = int u du#
#I = 1/2u^2 + C#
#I = 1/2ln^2(secx + tanx) + C#
Hopefully this helps!