For what values of #x# does #tan(-2x) = cot(x)# ?
1 Answer
Apr 8, 2017
Explanation:
Given:
#tan(-2x) = cot(x)#
That is:
#sin(-2x)/cos(-2x) = cos(x)/sin(x)#
Multiplying both sides by
#sin(x)sin(-2x) = cos(x)cos(-2x)#
Subtracting
#cos(x)cos(-2x)-sin(x)sin(-2x) = 0#
Compare the left hand side with the sum formula for
#cos(alpha)cos(beta)-sin(alpha)sin(beta) = cos(alpha+beta)#
So with
#cos(-x) = 0#
Note that
Hence:
#x = ((2k+1)pi)/2#
where
Here are the two functions
graph{(y+tan(2x))(y-cot(x)) = 0 [-10, 10, -5, 5]}