What is the first differential of #y = (1+logx)/(1-logx)#?
2 Answers
Explanation:
Assuming 'log' =
Applying the Quotient rule and the standard differential for
Explanation:
#"Assuming " log x=log_(10) x#
#"Then " d/dx(log_(10)x)=1/(xln10)# differentiate using the
#color(blue)"quotient rule"#
#"Given " y=(g(x))/(h(x))" then"#
#color(red)(bar(ul(|color(white)(2/2)color(black)(dy/dx=(h(x)g'(x)-g(x)h'(x))/(h(x))^2)color(white)(2/2)|)))#
#"here " g(x)=1+logxrArrg'(x)=1/(xln10)#
#"and " h(x)=1-logxrArrh'(x)=1/(xln10)#
#rArrdy/dx=((1-logx)(1/(xln10))-(1+logx)(1/(xln10)))/(1-logx)^2#
#color(white)(rArrdy/dx)=(1/(xln10)(1-logx-1-logx))/(1-logx)^2#
#color(white)(rArrdy/dx)=-(logx^2)/((xln10)(1-logx)^2)#