What is #int \ ln(x+sqrt(x^2+1)) \ dx# ?
3 Answers
Explanation:
Let us try a hyperbolic substitution.
Let
Then:
#int color(white)(.)ln(x+sqrt(x^2+1)) color(white)(.)dx = int color(white)(.)ln(sinh theta + sqrt(sinh^2 theta + 1)) dx/(d theta) d theta#
#color(white)(int color(white)(.)ln(x+sqrt(x^2+1)) color(white)(.)dx) = int color(white)(.)ln(sinh theta + cosh theta) cosh theta color(white)(.)d theta#
#color(white)(int color(white)(.)ln(x+sqrt(x^2+1)) color(white)(.)dx) = int color(white)(.)ln(e^theta) cosh theta color(white)(.)d theta#
#color(white)(int color(white)(.)ln(x+sqrt(x^2+1)) color(white)(.)dx) = int color(white)(.)theta cosh theta color(white)(.)d theta#
#color(white)(int color(white)(.)ln(x+sqrt(x^2+1)) color(white)(.)dx) = theta sinh theta - cosh theta + C#
#color(white)(int color(white)(.)ln(x+sqrt(x^2+1)) color(white)(.)dx) = x sinh^(-1) x - sqrt(x^2+1) + C#
If we would prefer not to have an inverse hyperbolic function in the answer, let's find another expression for it:
Let:
#y = sinh^(-1) x#
Then:
#x = sinh y = 1/2(e^y-e^(-y))#
Hence:
#e^y-2x-e^(-y) = 0#
So:
#(e^y)^2-(2x)(e^y)-1 = 0#
So using the quadratic formula:
#e^y = (2x+-sqrt((2x)^2+4))/2#
#color(white)(e^y) = x+-sqrt(x^2+1)#
If
So:
#e^y = x+sqrt(x^2+1)#
and:
#y = ln(x+sqrt(x^2+1))#
That is:
#sinh^(-1) x = ln(x+sqrt(x^2+1))#
So:
#int color(white)(.)ln(x+sqrt(x^2+1)) color(white)(.)dx = x ln(x+sqrt(x^2+1)) - sqrt(x^2+1) + C#
Note that
#d/dxln(x+sqrt(x^2+1))=1/(x+sqrt(x^2+1))(1+x/sqrt(x^2+1))#
#color(white)(d/dxln(x+sqrt(x^2+1)))=1/sqrt(x^2+1)#
Then we should try integration by parts:
#intln(x+sqrt(x^2+1))dx#
Letting:
#{(u=ln(x+sqrt(x^2+1)),=>,du=1/sqrt(x^2+1)dx),(dv=dx,=>,v=x):}#
So the integral equals:
#=xln(x+sqrt(x^2+1))-intx/sqrt(x^2+1)dx#
#=xln(x+sqrt(x^2+1))-sqrt(x^2+1)+C#
After using
Explanation:
1) I used
2) I solved transformed integral with integration by parts method.
3) I used inverse transform.