What are the roots of #z^3 = -8i# ?
1 Answer
Apr 15, 2017
Explanation:
The primitive complex cube root of
#omega = -1/2+sqrt(3)/2i#
If
Note that:
#(2i)^3 = 2^3i^3 = -8i#
So
So the other roots are:
#omega * 2i = (-1/2+sqrt(3)/2i) 2i = -sqrt(3)-i#
#omega^2 * 2i = (-1/2-sqrt(3)/2i) 2i = sqrt(3)-i#
Here are the three roots in the complex plane, plotted with the circle
graph{(x^2+(y-2)^2-0.01)((x-sqrt(3))^2+(y+1)^2-0.01)((x+sqrt(3))^2+(y+1)^2-0.01)(x^2+y^2-4) = 0 [-5, 5, -2.5, 2.5]}