#sinx=7/11#
Since #x# is in quadrant #"II"#, the angle is obtuse. This means that both #cosx# and #tanx# are negative.
#cosx=-sqrt(1-sin^2x)#
#tanx=sinx/cosx#
#cosx=-sqrt(1-(7/11)^2)=-6/11sqrt2#
#tanx=(7/11)/(-6/11sqrt2)=-7/12sqrt2#
In order to find #sin2x#, #cos2x# and #tan2x#, we need to use the double angle identities. These will be given below:
#sin2x=2sinxcosx=2(7/11)(-6/11sqrt2)=-84/121sqrt2#
#cos2x=2cos^2x-1=2(-6/11sqrt2)^2-1=23/121#
#tan2x=(2tanx)/(1-tan^2x)=(2(-7/12sqrt2))/(1-(-7/12sqrt2)^2)=-84/23sqrt2#