#lim_(x->0)( (1+x)^(1/x) - e ) / (x) = # ?

2 Answers
Apr 17, 2017

#-e/2#

Explanation:

Developing #f(x)= (1+x)^(1/x) # in Taylor series for #x->0# we have

#f(x)=f(0)+f'(0)x+1/(2!)f''(0)x^2 + cdots#

Here

#f(0) = lim_(x->0)(1+x)^(1/x) = e#
#f'(0) = lim_(x->0)(1 + x)^(1/x) (1/(x (1 + x)) - Log(1 + x)/x^2)=#
#=lim_(x->0)(1+x)^(1/x)lim_(x->0)(1/(x (1 + x)) - Log(1 + x)/x^2)#

but applying l'Hopital's rules

#lim_(x->0)(1/(x (1 + x)) - Log(1 + x)/x^2)=lim_(x->0)(-1/(x+1))/(6x+2)=-1/2#

so

#f'(0) = -e/2#

At this point we conclude that the Taylor series develop as

#f(x) = e -e/2x+eC_2x^2+ cdots# with #C_2# a suitable constant.

Following we have now

#lim_(x->0)( (1+x)^(1/x) - e ) / (x) equiv lim_(x->0)(f(x)-e)/x =#

#lim_(x->0)(e -e/2x+eC_2x^2+ cdots-e)/x = -e/2#

Apr 17, 2017

#-e/2#

Explanation:

Knowing that #lim_(xrarr0)(1+x)^(1/x)=e#, we can see that this limit is in the indeterminate form #0/0#. This means we can use l'Hopitals rule to find the limit by taking the derivatives of the numerator and denominator separately.

#lim_(xrarr0)((1+x)^(1/x)-e)/x=lim_(xrarr0)(d/dx(1+x)^(1/x))/1#

Use logarithmic differentiation to find the derivative of #(1+x)^(1/x)#:

#y=(1+x)^(1/x)#

#ln(y)=1/xln(1+x)#

#1/y*dy/dx=-1/x^2ln(1+x)+1/(x(1+x))#

#dy/dx=(1+x)^(1/x)(1/(x(1+x))-ln(1+x)/x^2)#

So the limit is:

#=lim_(xrarr0)(1+x)^(1/x)(1/(x(1+x))-ln(1+x)/x^2)#

#=lim_(xrarr0)(1+x)^(1/x)((x-(1+x)ln(1+x))/(x^2(1+x)))#

We can move #lim_(xrarr0)(1+x)^(1/x)# out of the limit as #e#, but to work with the remaining portion of the limit we will use l'Hopital's again since we have #0/0#:

#=elim_(xrarr0)(d/dx(x-(1+x)ln(1+x)))/(d/dx(x^2+x^3))#

#=elim_(xrarr0)(1-ln(1+x)-(1+x)/(1+x))/(2x+3x^2)#

#=elim_(xrarr0)(-ln(1+x))/(2x+3x^2)#

Since we have #0/0#, use l'Hopital's again:

#=elim_(xrarr0)(-1/(1+x))/(2+6x)#

Which we finally can evaluate:

#=e((-1/1)/2)#

#=-e/2#