Solve # sinx - cosx = 0#?
1 Answer
Apr 18, 2017
# x = pi/4 + npi #
Explanation:
We have:
# sinx - cosx = 0#
Which we can rearrange as follows:
# :. sinx = cosx #
# :. sinx/cosx = 1 #
# :. tanx = 1 #
# :. x = (arctan1) + npi \ \# where#n in ZZ#
# :. x = pi/4 + npi #