How do you evaluate #int_1^sqrt(3) 4/(x^2sqrt(x^2 - 1)) dx#?
1 Answer
The integral has value
Explanation:
Use the substitution
#I = int_1^sqrt(3) 4/((sec theta)^2sqrt((sec theta)^2 - 1)) secthetatantheta d theta#
# I = int_1^sqrt(3) 4/(sec^2thetasqrt(tan^2theta)) secthetatantheta d theta#
#I = int_1^sqrt(3) 4/(sec^2thetatantheta) secthetatantheta d theta#
#I= int_1^sqrt(3) 4/sectheta d theta#
#I = int_1^sqrt(3) 4costheta d theta#
#I = [4sintheta]_1^sqrt(3)#
DO NOT EVALUATE THIS INTEGRAL. SINCE WE DIDN'T CHANGE THE BOUNDS OF INTEGRATION, THIS INTEGRAL WILL BE INCORRECT. THE CORRECT PROCESS WOULD BE TO SWITCH THE VARIABLE BACK TO
From our initial substitution, we know that
#I = [(4sqrt(x^2 - 1))/x]_1^sqrt(3)#
#I = (4sqrt(sqrt(3)^2 - 1))/sqrt(3) - (4sqrt(1^2 - 1))/1#
#I = (4sqrt(2))/sqrt(3) - 0#
#I = 4sqrt(2/3)#
Hopefully this helps!