Prove that #sqrt(1-x)+sqrt((1+x)^2/(1-x))+(1+x)~=1+x/3# for small values of #x# using binomial theorem?

1 Answer
Jan 2, 2018

#sqrt(1-x)+sqrt((1+x)^2/(1-x))+(1+x)~=3+2x# and not #(1+x/3)#

Explanation:

Let us first simplify

#sqrt(1-x)+sqrt((1+x)^2/(1-x))+(1+x)#

= #1/sqrt(1-x)[1-x+sqrt((1+x)^2)+(1+x)sqrt(1-x)]#

= #1/sqrt(1-x)[1-x+1+x+(1+x)sqrt(1-x)]#

= #(1-x)^(-1/2)[2+(1+x)(1-x)^(1/2)]#

= #2(1-x)^(-1/2)+(1+x)#

= #1+x+2(1-x)^(-1/2)#

We can now expand #(1-x)^(-1/2)# usng Binomial Theorem according to which

#(1-x)^n=1-nx+(n(n-1))/(2!)x^2+(n(n-1)(n-2))/(3!)x^3+(n(n-1)(n-2)(n-3))/(4!)x^3+...........#

Hence #(1-x)^(-1/2)=1-(-1)/2x+((-1/2)(-1/2-1))/(2!)x^2-((-1/2)(-1/2-1)(-1/2-2))/(3!)x^3+((-1/2)(-1/2-1)(-1/2-2)(-1/2-3))/(4!)x^3+...........#

= #1+1/2x+(1/2*3/2)/2x^2+(1/2*3/2*5/2)/6x^3+(1/2*3/2*5/2*7/2)/24x^4+........#

= #1+1/2x+3/8x^2+5/16x^3+35/128x^4+..........#

Hence #sqrt(1-x)+sqrt((1+x)^2/(1-x))+(1+x)=1+x+2(1-x)^(-1/2)#

= #1+x+2(1+1/2x+3/8x^2+5/16x^3+35/128x^4+.........)#

= #1+x+2+x+3/4x^2+5/8x^3+35/64x^4+.........#

= #3+2x+3/4x^2+5/8x^3+35/64x^4+.........#

and ignoring higher powers of #x#

#sqrt(1-x)+sqrt((1+x)^2/(1-x))+(1+x)~=3+2x# and not #(1+x/3)#