How do you integrate #int (sinx +cosx)^2 dx#?
2 Answers
Explanation:
Now, substitue
The antiderivative is
Explanation:
Here's another way of doing this. We expand, calling the integral
#I = int (sinx + cosx)^2 dx#
#I = int sin^2x + cos^2x+ 2sinxcosx dx#
#I = int 1 + 2sinxcosx#
#I = int 1 dx + int 2sinxcosxdx#
We now use the identity
#I = int 1 dx + int sin2xdx#
Now let
#I = int 1 dx + 1/2int sinu du#
#I = x - 1/2cosu#
#I = x - 1/2cos(2x) + C#
Now use
#I = x - 1/2(1 - 2sin^2x) + C#
#I = x + 1/2 + sin^2x + C#
However, since
#I = sin^2x+ x + C#
Hopefully this helps!