Evaluate the integral #int \ x^2(x^3-1)^4 \ dx #?
1 Answer
May 3, 2017
# int \ x^2(x^3-1)^4 \ dx = 1/15(x^3-1)^5 + C #
Explanation:
We want to find:
# I = int \ x^2(x^3-1)^4 \ dx #
We can perform a simple substitution; Let
# u = x^3-1 => (du)/dx = 3x^2 #
If we perform the substitution then we get:
# I = int \ 1/3u^4 \ du #
So we can now integrate to get:
# I = 1/3*1/5u^5 + C #
# \ \ = 1/15 u^5 + C #
And restoring the substitution we get:
# I = 1/15(x^3-1)^5 + C #