Question #a034f
1 Answer
Here's what I got.
Explanation:
The
#"HNO"_ (3(aq)) + "H"_ 2"O"_ ((l)) -> "H"_ 3"O"_ ((aq))^(+) + "NO"_ (3(aq))^(-)#
This means that a nitric acid solution has
#["HNO"_3] = ["H"_3"O"^(+)]#
The
#color(blue)(ul(color(black)("pH" = - log(["H"_3"O"^(+)]))))#
This means that you have
#["H"_3"O"^(+)] = 10^(-"pH")#
which, in your case, will get you
#["H"_3"O"^(+)] = 10^(-0.29) = "0.513 M"#
Now, notice that you have
#"Na"_ 2"CO"_ (3(aq)) + color(red)(2)"HNO"_ (3(aq)) -> "CO"_ (2(g)) uarr + "H"_ 2"O"_ ((l)) + 2"NaNO" _(3(aq))#
The
In your case, the reaction consumed
#25.4 color(red)(cancel(color(black)("cm"^3))) * ("0.10 moles Na"_2"CO"_3)/(10^3color(red)(cancel(color(black)("cm"^3)))) = "0.00254 moles Na"_2"CO"_3#
This implies that it also consumed
#0.00254 color(red)(cancel(color(black)("moles Na"_2"CO"_3))) * (color(red)(2)color(white)(.)"moles HNO"_3)/(1color(red)(cancel(color(black)("mole Na"_2"CO"_3)))) = "0.00508 moles HNO"_3#
If you know the concentration of the nitric acid solution
#["HNO"_3] = "0.513 M"#
you can find the volume used in the titration
#0.00508 color(red)(cancel(color(black)("moles HNO"_3))) * (10^3color(white)(.)"cm"^3)/(0.513 color(red)(cancel(color(black)("moles HNO"_3)))) = "9.9 cm"^3#
Therefore, you can say that you titrated