Find the integral #intsec(x)/(sec(x)+tan(x))dx#?

3 Answers
May 27, 2017

# tanx-secx+C.#

Explanation:

#I=intsecx/(secx+tanx)dx,#

#=intsecx/(secx+tanx)xx(secx-tanx)/(secx-tanx)dx,#

#=int(sec^2x-secxtanx)/(sec^2x-tan^2x)dx,#

#=intsec^2xdx-intsecxtanxdx,...[because, sec^2x-tan^2x=1],#

#:. I=tanx-secx+C.#

#intsecx/(secx+tanx)dx=-1/(secx+tanx)+C#

Explanation:

#intsecx/(secx+tanx)dx#

Let #u=secx+tanx#, then

#du=(secxtanx+sec^2x)dx=secx(secx+tanx)dx#

#intsecx/(secx+tanx)dx#

= #intsecx/uxx(du)/(secx(secx+tanx)#

= #int1/u^2du#

= #-1/u +C #

= #-1/(secx+tanx)+C#

May 27, 2017

Given: #intsec(x)/(sec(x)+tan(x))dx#

Multiply by 1 in the form of #(sec(x)-tan(x))/(sec(x)-tan(x))#

#intsec(x)/(sec(x)+tan(x))(sec(x)-tan(x))/(sec(x)-tan(x))dx#

The denominator the difference of two squares:

#int(sec(x)(sec(x)-tan(x)))/(sec^2(x)-tan^2(x))dx#

From the identity #1 + tan^2(x)=sec^2(x)#, we see that the denominator becomes 1:

#intsec(x)(sec(x)-tan(x))dx#

Distributing the secant function gives us two integrals:

#intsec^2(x)dx-intsec(x)tan(x)dx#

The first integral becomes the tangent function:

#tan(x)-intsec(x)tan(x)dx#

Use the identities #tan(x) = sin(x)/cos(x) and sec(x) = 1/cos(x)# on the second integral:

#tan(x)-intsin(x)/cos^2(x)dx#

let #u = cos(x)#, then #du = -sin(x)dx#

#tan(x)+intu^-2du#

#tan(x)-u^-1+C#

#intsec(x)/(sec(x)+tan(x))dx= tan(x) -sec(x)+ C#