Evaluate the integral? : # int cscx dx#
1 Answer
Jul 4, 2017
# int \ cscx \ dx = ln|cscx-cotx| + C#
Explanation:
To derive the result for this integral we multiply numerator and denominator by
We can write the integral as:
# int \ cscx \ dx = int \ cscx \ (cscx-cotx)/(cscx-cotx) \ dx #
# " " = int \ (csc^2x-cotxcscx)/(cscx-cotx) \ dx #
Now we can perform a substitution, Let:
# u = cscx-cotx => (du)/dx = csc^2x-cotxcscx #
Substituting into the integral we get:
# int \ cscx \ dx = int \ 1/u \ du #
# " " = ln|u| + C #
Restoring the substitution we get:
# int \ cscx \ dx = ln|cscx-cotx| " "# QED