If #costheta=(cosphi-e)/(1-ecosphi)#, prove that #tan(theta/2)=+-sqrt((1+e)/(1-e))tan(phi/2)#?

2 Answers
Jul 23, 2017

See the explanation below

Explanation:

We need

#costheta=2cos^2(theta/2)-1#

#cos(theta/2)=+-sqrt((1+costheta)/2)#

#costheta=1-2sin^2theta#

#sin(theta/2)=+-sqrt((1-costheta)/2)#

#tan(theta/2)=+-sqrt((1-costheta)/(1+costheta))#

#costheta=(cosphi-e)/(1-ecosphi)#

Therefore,

#tan(theta/2)=+-sqrt((1-((cosphi-e)/(1-ecosphi)))/(1+((cosphi-e)/(1-ecosphi))))#

#=+-sqrt((1-ecosphi-cosphi+e)/(1-ecosphi+cosphi-e))#

#=+-sqrt(((1+e)(1-cosphi))/((1-e)(1+cosphi)))#

#=+-sqrt((1+e)/(1-e))*sqrt((1-cosphi)/(1+cosphi))#

But,

#tan(phi/2)=+-sqrt((1-cosphi)/(1+cosphi))#

Therefore,

#tan(theta/2)=+-sqrt((1+e)/(1-e))tan(phi/2)#

Jul 23, 2017

Please see below.

Explanation:

Recall the identity #tan(theta/2)=+-sqrt((1-costheta)/(1+costheta))#. Note that this emerges from another identity #costheta=1-2sin^2(theta/2)=2cos^2(theta/2)-1#

Now as #costheta=costheta/1=(cosphi-e)/(1-ecosphi)#, using componendo dividendo, we get

#(costheta+1)/(costheta-1)=(cosphi-e+1-ecosphi)/(cosphi-e-1+ecosphi)#

#=(1+cosphi-e(1+cosphi))/(e(cosphi-1)-1+cosphi)#

#((1+cosphi)(1-e))/((1+e)(cosphi-1))#

Hence #(1-costheta)/(1+costheta)=((1+e)(1-cosphi))/((1-e)(1+cosphi))#

and #tan(theta/2)=+-sqrt(((1+e)(1-cosphi))/((1-e)(1+cosphi)))#

#= +-sqrt((1+e)/(1-e))sqrt((1-cosphi)/(1+cosphi))#

#= +-sqrt((1+e)/(1-e))tan(phi/2)#

Note: Application of componendo and dividendo means if #a/b=c/d#, then #(a+b)/(a-b)=(c+d)/(c-d)#