How do you solve the integral #int e^x/sqrt(e^(2x) + e^x+ 1)dx#?

1 Answer
Sep 1, 2017

I got #lnabs(2e^x+1+2sqrt(e^(2x)+x+1))+C#

Explanation:

We let #u = e^x#. Then #du = e^xdx# and #dx = (du)/e^x#.

#I = int u/(usqrt(u^2 + u + 1))#

#I = int1/sqrt(u^2 + u + 1)du#

#I = int 1/sqrt(1(u^2 + u + 1/4 - 1/4) + 1)du#

#I = int 1/sqrt((u + 1/2)^2 + 3/4) du#

We now let #t= (u +1/2)#. Then #dt = du#.

#I = int 1/sqrt(t^2 + 3/4) dt#

Now we let #t = sqrt(3)/2tantheta#. Then #dt = sqrt(3)/2sec^2theta#

#I = int 1/sqrt((sqrt3/2tantheta)^2 + 3/4) * sqrt(3)/2sec^2theta d theta#

#I = int 1/sqrt(3/4tan^2theta + 3/4) * sqrt(3)/2sec^2theta d theta#

Now we use #tan^2theta + 1 = sec^2theta#.

#I = int 1/sqrt(3/4sec^2theta) * sqrt(3)/2sec^2theta d theta#

#I = int 1/(sqrt(3)/2sectheta) * sqrt(3)/2sec^2theta d theta#

#I = int2/sqrt(3)costheta * sqrt(3)/2sec^2theta d theta#

We know that cosine and secant are reciprocals, so their product is #1#.

#I = int secthetad theta#

This is a common integral, derived here

#I = ln|sectheta + tantheta| + C#

We know from our initial substitution that #tantheta = (2t)/sqrt(3)#, and because #tan^2theta + 1 = sec^2theta#, we know that

#sec^2theta = (4t^2)/3 + 1 = (4t^2 + 3)/3#

And

#sectheta = sqrt((4t^2 + 3)/3)#

Thus,

#I = ln|(2t)/sqrt(3) + sqrt((4t^2 + 3)/3)| + C#

Now we can reverse the others substitutions.

#I = ln|(2(u+ 1/2))/sqrt(3) + sqrt((4(u + 1/2)^2 + 3)/3)| +C#

#I = ln|(2(e^x + 1/2))/sqrt(3) + sqrt((4(e^x + 1/2)^2 + 3)/3)| + C#

Note that #sqrt(4(e^x+1/2)^2+3)=sqrt(4(e^(2x)+e^x+1/4)+3)=sqrt(4e^(2x)+4e^x+4)=2sqrt(e^(2x)+e^x+1)#

#I=lnabs((2e^x+1+2sqrt(e^(2x)+x+1))/(sqrt3))+C#

Note that #sqrt3# can be removed from the natural logarithm as #-lnsqrt3#, which will be absorbed into the constant of integration #C#. This leaves:

#I=lnabs(2e^x+1+2sqrt(e^(2x)+x+1))+C#

Hopefully this helps!