How do you solve the integral #int e^x/sqrt(e^(2x) + e^x+ 1)dx#?
1 Answer
I got
Explanation:
We let
#I = int u/(usqrt(u^2 + u + 1))#
#I = int1/sqrt(u^2 + u + 1)du#
#I = int 1/sqrt(1(u^2 + u + 1/4 - 1/4) + 1)du#
#I = int 1/sqrt((u + 1/2)^2 + 3/4) du#
We now let
#I = int 1/sqrt(t^2 + 3/4) dt#
Now we let
#I = int 1/sqrt((sqrt3/2tantheta)^2 + 3/4) * sqrt(3)/2sec^2theta d theta#
#I = int 1/sqrt(3/4tan^2theta + 3/4) * sqrt(3)/2sec^2theta d theta#
Now we use
#I = int 1/sqrt(3/4sec^2theta) * sqrt(3)/2sec^2theta d theta#
#I = int 1/(sqrt(3)/2sectheta) * sqrt(3)/2sec^2theta d theta#
#I = int2/sqrt(3)costheta * sqrt(3)/2sec^2theta d theta#
We know that cosine and secant are reciprocals, so their product is
#I = int secthetad theta#
This is a common integral, derived here
#I = ln|sectheta + tantheta| + C#
We know from our initial substitution that
#sec^2theta = (4t^2)/3 + 1 = (4t^2 + 3)/3#
And
#sectheta = sqrt((4t^2 + 3)/3)#
Thus,
#I = ln|(2t)/sqrt(3) + sqrt((4t^2 + 3)/3)| + C#
Now we can reverse the others substitutions.
#I = ln|(2(u+ 1/2))/sqrt(3) + sqrt((4(u + 1/2)^2 + 3)/3)| +C#
#I = ln|(2(e^x + 1/2))/sqrt(3) + sqrt((4(e^x + 1/2)^2 + 3)/3)| + C#
Note that
#I=lnabs((2e^x+1+2sqrt(e^(2x)+x+1))/(sqrt3))+C#
Note that
#I=lnabs(2e^x+1+2sqrt(e^(2x)+x+1))+C#
Hopefully this helps!