How do you integrate #e^sqrt(4x + 9)#?
1 Answer
Sep 5, 2017
The integral equals
Explanation:
A logical first step would be to let
#I = 1/4int e^sqrt(u)du#
If we now let
#I = 1/4int 2te^tdt#
#I = 1/2int te^t dt#
So now we can use integration by parts. Letting
#{(n = t), (dm = e^tdt):}#
We get
#{(dn = dt), (m = e^t):}#
We have:
#I = 1/2(te^t - int e^t)#
#I = 1/2te^t - 1/2e^t + C#
Reversing the substitutions:
#I = 1/2sqrt(u)e^sqrt(u) - 1/2e^sqrt(u) + C#
#I = 1/2sqrt(4x + 9)e^sqrt(4x + 9) - 1/2e^sqrt(4x + 9) + C#
Hopefully this helps!