# How many "microlitres" are in a volume of 1.22xx10^-23*cm^3?

Sep 6, 2017

$1.22 \times {10}^{- 20}$ $\mu \text{L}$

#### Explanation:

The volume of a single aluminium atom is $1.22 \times {10}^{- 23}$ ${\text{cm}}^{3}$.

$1$ ${\text{cm}}^{3}$ is equivalent to $0.001$ $\text{L}$, or ${10}^{- 3}$ $\text{L}$.

So, $1.22 \times {10}^{- 23}$ ${\text{cm}}^{3}$ is equivalent to $1.22 \times {10}^{- 23} \times {10}^{- 3} = 1.22 \times {10}^{- 26}$ $\text{L}$.

Now, to go from litres $\left(\text{L}\right)$ to micro-litres $\left(\mu \text{L}\right)$, we multiply the value by ${10}^{6}$.

Therefore, $1.22 \times {10}^{- 26}$ $\text{L}$ is equivalent to $1.22 \times {10}^{- 26} \times {10}^{6} = 1.22 \times {10}^{- 20}$ $\mu \text{L}$.

Sep 6, 2017

Well, there are $1000 \cdot c {m}^{3} \cdot {L}^{-} 1$....agreed?

#### Explanation:

And ${10}^{6} \cdot \mu L \cdot {L}^{-} 1$.........

And thus $1 \cdot L \equiv {10}^{6} \cdot \mu L \equiv 1000 \cdot c {m}^{3}$.

And so..............

$1.22 \times {10}^{-} 23 \cdot \cancel{c {m}^{3}} \times {10}^{-} 3 \cdot \cancel{L} \cdot \cancel{c {m}^{-} 3} \times {10}^{6} \cdot \mu L \cdot \cancel{{L}^{-} 1}$

$= 1.22 \times {10}^{-} 20 \cdot \mu L$..........which is not a large volume......please check my calculations.....