Simplify # cot theta - tan theta #?

1 Answer
Nov 12, 2017

# cot theta - tan theta -= 2cot(2theta)#

Explanation:

We can write the expression as:

# cot theta - tan theta -= costheta/sintheta - sintheta/costheta#

# " " = (costheta costheta - sintheta sintheta)/(sinthetacostheta#

# " " = (cos^2theta - sin^2theta)/(sinthetacostheta#

And using the identities:

# sin2A-= 2sinAcosA #
# cos2A-= cos^2A-sin^2A #

We have:

# cot theta - tan theta -= (cos2theta)/(1/2sin2theta#

# " " = 2cot(2theta)#

We can verify the graphically:

# cot theta - tan theta #
graph{cot x - tan x [-10, 10, -5, 5]}

# 2cot(2theta)#
graph{2cot(2x) [-10, 10, -5, 5]}