Note that neither #cot(x)# nor #csc(x)# are defined for #x=kpi, k in ZZ#
So the given equation
#color(white)("XXX")2sin(x)-3cot(x)-3csc(x)=0#
is not valid for #x=0#
Multiplying by #sin(x)#
#color(white)("XXX")2sin^2(x)-3cos(x)-3=0#
#color(white)("XXX")2(1-cos^2(x))-3cos(x)-3=0#
#color(white)("XXX")-2cos^2(x)-3cos(x)-1=0#
#color(white)("XXX")2cos^2(x)+3cos(x)+1=0#
#color(white)("XXX")(2cos(x)+1)(cos(x)+1)=0#
#color(white)("XXX"){:
((2cos(x)+1)=0," or ",(cos(x)+1)=0),
(rarr cos(x)=-1/2,,rarr cos(x)=-1),
(rarr x = (2pi)/3,,rarr x=pi),
(color(white)("xxxxx")"for " x in [0,pi],,color(white)("xxxxx")"for " x in [0,pi]),
(,,"BUT the given expression is not defined for this value of "x)
:}#