Solve the equation #x^2+5x+4 ge 0 #?
1 Answer
Nov 30, 2017
#x le -4# or#x ge -1#
Explanation:
We have:
# x^2+5x+4 ge 0 #
We first solve the equation:
# x^2+5x+4 = 0 => (x+4)(x+1)=0#
# => x=-1, -4 #
Ther using appropriate software or a graphical calculator we examine the graph:
graph{ y=x^2+5x+4 [-10, 10, -5, 5]}
And if we add shading we seek the range in which the curve lies above the
graph{ (y-x^2-5x-4)(sqrt(y))^2 <= 0 [-10, 10, -5, 5]}
and we see from the graph that:
# { (x le -4),(-4 lt x lt -1), (x ge -1) :} => { (x^2+5x+4 ge 0),(x^2+5x+4 lt 0), (x^2+5x+4 ge 0) :} #
Thus we have:
#x le -4# or#x ge -1#