Question #54207

1 Answer
Dec 1, 2017

The answer is #=-cosx+1/3cos^3x+1/5cos^5x-1/7cos^7x+C#

Explanation:

The integral is

#intsin^5x(1+cos^2x)dx=intsin^5xdx+intsin^5xcos^2xdx#

Perform this integral by substitution

First calculate #intsin^5xdx#

#intsin^5xdx=intsin^4xsinxdx#

#=int(sin^2x)^2sinxdx#

#=int(1-cos^2x)^2sinxdx#

Let #u=cosx#, #=>#, #du=-sinxdx#

Therefore,

#intsin^5xdx=-int(1-u^2)^2du=-int(1-2u^2+u^4)du#

#=-u+2/3u^3-1/5u^5#

#=-cosx+2/3cos^3x-1/5cos^5x#

Second calculate #intsin^5xcos^2xdx#

#intsin^5xcos^2xdx=intsin^4xsinxcos^2xdx#

#=int(1-cos^2x)^2cos^2xsinxdx#

Let #v=cosx#, #=>#, #dv=-sinxdx#

Therefore,

#intsin^5xcos^2xdx=-int(1-u^2)^2u^2du#

#=-int(1-2u^2+u^4)u^2du#

#=-int(u^2-2u^4+u^6)du#

#=-(1/3u^3-2/5u^5+1/7u^7)#

#=-1/3cos^3x+2/5cos^5x-1/7cos^7x#

Putting the #2# parts together

#intsin^5x(1+cos^2x)dx=-cosx+2/3cos^3x-1/5cos^5x-1/3cos^3x+2/5cos^5x-1/7cos^7x#

#=-cosx+1/3cos^3x+1/5cos^5x-1/7cos^7x+C#