Solve the trigonometric equation #sin(x+60^@)=2cos(x-45^@)#?

1 Answer
Dec 9, 2017

Solution is #21.85^@# and #201.85^@#.

Explanation:

#sin(x+60^@)=2cos(x-45^@)# can be expanded as

#sinxcos60^@+cosxsin60^@=2(cosxcos45^@-sinxsin45^@)#

or #sinx xxsqrt3/2+cosx xx1/2=2(cosx xx1/sqrt2-sinx xx1/sqrt2)#

or #sqrt3sinx+cosx=2sqrt2cosx-2sqrt2sinx#

or #sinx(sqrt3+2sqrt2)=(2sqrt2-1)cosx#

or #sinx/cosx=(2sqrt2-1)/(sqrt3+2sqrt2)=(2xx1.4142-1)/(1.732+2xx1.4142)#

= #1.8284/4.5604=0.401#

i.e. #tanx=0.401=tan21.85^@#

i.e. #x=nxx180^@+21.85^@#, where #n# is an integer.

And in the interval #0^@<=x<=360^@#,

Solution is #21.85^@# and #201.85^@#.