Question #d325d
2 Answers
To be able to add these together we will use cross multiply to get the fractions to have similar denominators.
Applying this, we get:
We can use the identity that
Explanation:
#"consider the left side"#
#"we require the fractions to have a "color(blue)"common denominator"#
#"multiply numerator/denominator of"#
#(1+sinx)/cosx" by "(1+sinx)#
#rArr(1+sinx)^2/(cosx(1+sinx))#
#"multiply numerator/denominator of"#
#cosx/(1+sinx)" by "cosx#
#rArrcos^2x/(cosx(1+sinx))#
#"we now have the sum"#
#(1+sinx)^2/(cosx(1+sinx))+cos^2x/(cosx(1+sinx))#
#"expand and sum the numerators"#
#=(1+2sinx+sin^2x+cos^2x)/(cosx(1+sinx))#
#•color(white)(x)sin^2x+cos^2x=1#
#=(2cancel((1+sinx)))/(cosxcancel((1+sinx)))#
#=2/cosx=2secx=" right side "rArr" verified"#