Question #d325d

2 Answers
Dec 7, 2017

To be able to add these together we will use cross multiply to get the fractions to have similar denominators.

#a/b+c/d=(a*d)/(b*d)+(c*b)/(b*d)=(ad+cb)/(bd)#

Applying this, we get:

#((1+sinx)/cosx)+(cosx/(1+sinx))#

#=((1+sinx) * (1+sinx))/(cosx * (1+sinx))+(cosx * cosx)/(cosx * (1+sinx))#

#=((1+sinx)(1+sinx)+(cosx)(cosx))/(cosx(1+sinx))#

#=(1+2sinx+sin^2x+cos^2x)/(cosx(1+sinx))#

We can use the identity that #cos^2x+sin^2x-=1# to get:

#=(1+2sinx+1)/(cosx(1+sinx))#

#=(2+2sinx)/(cosx(1+sinx))#

#=(2(1+sinx))/(cosx(1+sinx))#

#=(2cancel((1+sinx)))/(cosxcancel((1+sinx)))#

#=2/cosx#

#=2secx#

Dec 7, 2017

#"see explanation"#

Explanation:

#"consider the left side"#

#"we require the fractions to have a "color(blue)"common denominator"#

#"multiply numerator/denominator of"#

#(1+sinx)/cosx" by "(1+sinx)#

#rArr(1+sinx)^2/(cosx(1+sinx))#

#"multiply numerator/denominator of"#

#cosx/(1+sinx)" by "cosx#

#rArrcos^2x/(cosx(1+sinx))#

#"we now have the sum"#

#(1+sinx)^2/(cosx(1+sinx))+cos^2x/(cosx(1+sinx))#

#"expand and sum the numerators"#

#=(1+2sinx+sin^2x+cos^2x)/(cosx(1+sinx))#

#•color(white)(x)sin^2x+cos^2x=1#

#=(2cancel((1+sinx)))/(cosxcancel((1+sinx)))#

#=2/cosx=2secx=" right side "rArr" verified"#