Find #int 1/((1+x^2)sqrt(1-arctanx)) dx #?

1 Answer
Dec 13, 2017

# int \ 1/((1+x^2)sqrt(1-arctanx)) \ dx = - 2sqrt(1-arctanx) + C #

Explanation:

We seek:

# I = int \ 1/((1+x^2)sqrt(1-arctanx)) \ dx #

We can perform a substitution, Let:

# u = 1-arctanx => (du)/dx = -1/(x^2+1) #

Substituting into the integral we get:

# I = int \ (-1)/sqrt(u) \ du #
# \ \ = int \ (-1)/sqrt(u) \ du #
# \ \ = - \ int \ (1)/sqrt(u) \ du #

This is now a trivial integration, so sing the power rule:

# I = - 2sqrt(u) + C #

Finally, restoring the substitution:

# I = - 2sqrt(1-arctanx) + C #