We'll start this integration by using substitution.
For #intsqrtx(e^-sqrtx)dx#, let #u=-sqrtx=-x^(1/2)#.
Therefore, #(du)/dx[-x^(1/2)]=-d/dx[x^(1/2)]=-(1/2x^(-1/2))=-1/(2sqrtx)#, so #du=-1/(2sqrtx)dx#.
To substitute we need something that's part of the integrand, so rearrange this to #-2sqrtxdu=dx#
Now our integral looks like #intsqrtx(e^u)(-2sqrtxdu)=int-2xe^udu#.
Remember that #u=-sqrtx#, therefore #u^2=x# so our integral is equivalent to #int-2u^2e^udu#, which we can solve.
First apply the constant rule, noting that #int-2u^2e^udu=-2color(green)(intu^2e^udu)#
Now we need to use integration by parts, which states that #intfdg=fg-intgdf#. Let #f=u^2# and #dg=e^udu#. #(df)/(du)=d/(du)[u^2]=2u#, so #df=2udu#. #intdg=inte^udu=e^u#, so #g=e^u#
#color(green)(intu^2e^udu)=u^2e^u-inte^u(2udu)=u^2e^u-2color(purple)(intue^udu)#
We need to use integration by parts again. This time, let #f=u# and #dg=e^udu#. #(df)/(du)=d/(du)[u]=1#, so #df=du#. #intdg=inte^udu=e^u#, so #g=e^u#
#color(purple)(intue^udu)=ue^u-inte^udu=ue^u-e^u#
#color(green)(intu^2e^udu)=u^2e^u-2color(purple)((ue^u-e^u))=u^2e^u-2ue^u+2e^u#
#-2(color(green)(u^2e^u-2ue^u+e^u))=-2u^2e^u+4ue^u-4e^u#
Finally, plug #-sqrtx# back in for #u# and simplify.
#-2xe^-sqrtx-4sqrtxe^-sqrtx-4e^-sqrtx=-2e^-sqrtx(x+2sqrtx+2)#
We've omitted the constant of integration thus far since all we were doing was integration by parts and substitution, so we'll put it in now.
#-2e^-sqrtx(x+2sqrtx+2)+C#