Find the derivative of #1+cosxsinx+3cos4x+7tan8x#?

2 Answers
Jan 4, 2018

#d/(dx)[1+cosxsinx+3cos4x+7tan8x]=cos2x-12sin4x+56sec^2 8x#

Explanation:

As #d/(dx)[a(x)+b(x)+c(x)+d(x)]=(da)/(dx)+(db)/(dx)+(dc)/(dx)+(dd)/(dx)#

#d/(dx)[1+cosxsinx+3cos4x+7tan8x]=0+d/(dx)sinxcosx+d/(dx)3cos4x+d/(dx)7tan8x# (as derivative of constant term is #0#)

Now we can use chain rule to find derivative of #cos4x# and

#d/(dx)3cos4x=3xxd/(d(4x))cos4x xxd/(dx)4x#

= #3xx(-sin4x)xx4=-12sin4x#

Similarly #d/(dx)7tan8x=7xxsec^2 8x xx8=56sec^2 8x#

To find derivative of #sinxcosx# we write it as #1/2sin2x# and

#d/(dx)sinxcossx=d/(dx)1/2sin2x=1/2xxcos2x xx2#

= #cos2x#

Hence #d/(dx)[1+cosxsinx+3cos4x+7tan8x]=cos2x-12sin4x+56sec^2 8x#

Jan 4, 2018

#y'=cos^2x-sin^2x-4(3sin(4x)-14sec^2(8x))#

#color(white)(X)=cos(2x)-4(3sin(4x)-14sec^2(8x))#

Explanation:

We can write #y# in terms of functions of #x#.

#y=1+f(x)g(x)+3h(x)+7j(x)#

#y'=f(x)g'(x)+f'(x)g(x)+3h'(x)+7j'(x)#

#f(x)=cosx#
#f'(x)=-sinx#

#g(x)=sinx#
#g'(x)=cosx#

#h(x)=cos(4x)#
#h'(x)=-4sin(4x)#

#j(x)=tan(8x)#
#j'(x)=8sec^2(8x)#

#y'=cosxcosx-sinxsinx+3(-4sin(4x))+7(8sec^2(8x))#

#=cos^2x-sin^2x-12sin(4x)+56sec^2(8x)#

#=cos^2x-sin^2x-4(3sin(4x)-14sec^2(8x))#

Using the double angle identity: #cos(2x)=cos^2x-sin^2x#, we get:

#=cos(2x)-4(3sin(4x)-14sec^2(8x))#