Prove that #(1+sinβ-cosβ)/(1+sinβ+cosβ) +(1+sinβ+cosβ)/(1+sinβ-cosβ)=2cscbeta#?

3 Answers

1st part of LHS

# =(1+sinβ-cosβ)/(1+sinβ+cosβ)#

# =(sinbeta(1+sinβ-cosβ))/(sinbeta(1+sinβ+cosβ))#

# =(sinbeta+sin^2β-sinbetacosβ)/(sinbeta(1+sinβ+cosβ))#

# =(sinbeta+1-cos^2β-sinbetacosβ)/(sinbeta(1+sinβ+cosβ))#

# =(sinbeta(1-cosbeta)+(1-cosβ)(1+cosβ))/(sinbeta(1+sinβ+cosβ))#

# =((1-cosbeta)(sinbeta+1+cosβ))/(sinbeta(1+sinβ+cosβ))#

# =(1-cosbeta)/sinbeta#

# =1/sinbeta-cosbeta/sinbeta#

#=cscbeta-cotbeta#

2nd part of LHS

#=(1+sinβ+cosβ)/(1+sinβ-cosβ)#

=Reciprocal of 1st part of LHS

#=1/(cscbeta+cotbeta)#

#=(csctheta-cottheta)/(csc^2beta-cot^2beta)#

#=cscbeta-cotbeta#

Adding we get

LHS
# = cscβ-cotbeta+cscbeta+cotbeta#

#=2cscbeta=RHS#

Jan 18, 2018

Proving this identity in explanation section.

Explanation:

After using #u=beta#, this equation became

#(1+sinu-cosu)/(1+sinu+cosu)+(1+sinu+cosu)/(1+sinu-cosu)#

=#[(1+sinu-cosu)^2+(1+sinu+cosu)^2]/[(1+sinu+cosu)*(1+sinu-cosu)]#

After expanding equation, numerator became

#A=1+(sinu)^2+(cosu)^2+2sinu-2cosu-2sinu*cosu+1+(sinu)^2+(cosu)^2+2sinu+2cosu+2sinu*cosu#

=#2+2*[(sinu)^2+(cosu)^2]+4sinu#

=#2+2+4sinu#

=#4+4sinu#

=#4*(1+sinu)#

Also denominator became,

#B=(1+sinu)^2-(cosu)^2#

=#1+(sinu)^2+2sinu-(cosu)^2#

=#(sinu)^2+(cosu)^2+(sinu)^2+2sinu-(cosu)^2#

=#2sinu+2(sinu)^2#

=#2sinu*(1+sinu)#

Thus,

#(1+sinu-cosu)/(1+sinu+cosu)+(1+sinu+cosu)/(1+sinu-cosu)#

=#A/B#

=#[4*(1+sinu)]/[2sinu*(1+sinu)]#

=#2/sinu#

=#2cscu#

=#2csc(beta)#

Jan 19, 2018

#LHS =(1+sinβ-cosβ)/(1+sinβ+cosβ) +(1+sinβ+cosβ)/(1+sinβ-cosβ)#

#=((1+sinβ-cosβ)^2+(1+sinβ+cosβ)^2)/((1+sinβ)^2-cos^2β)#

#=(2(1+sin^2β+cos^2β)+2sinβ-2sinbetacosβ-2cosbeta+2sinbeta+2sinbetacosbeta+2cosbeta)/((1+sin^2β+2sinbeta-cos^2β))#

#=(4+4sinβ)/((2sin^2β+2sinbeta)#

#=(cancel4^2(cancel(1+sinβ)))/(cancel2(sinbeta(cancel(sinβ+1)))#

#=2/sinbeta=2cscbeta#