Simplify #cos(2alpha+beta)-cos(2alpha-beta)#?

2 Answers
Jan 22, 2018

Read below.

Explanation:

First of all, remember that:
#cos(alpha+beta)=cos(alpha)cos(beta)-sin(alpha)sin(beta)#
#cos(alpha-beta)=cos(alpha)cos(beta)+sin(alpha)sin(beta)#

Therefore, #cos(2alpha+beta)=cos(2alpha)cos(beta)-sin(2alpha)sin(beta)# Similarly,
#cos(2alpha-beta)=cos(2alpha)cos(beta)+sin(2alpha)sin(beta)#
Therefore,
#cos(2alpha+beta)-cos(2alpha-beta)=cos(2alpha)cos(beta)-sin(2alpha)sin(beta)-[cos(2alpha)cos(beta)+sin(2alpha)sin(beta)]#
=> #cos(2alpha)cos(beta)-sin(2alpha)sin(beta)-cos(2alpha)cos(beta)-sin(2alpha)sin(beta)#
Combine like terms
#cos(2alpha)cos(beta)-sin(2alpha)sin(beta)-cos(2alpha)cos(beta)-sin(2alpha)sin(beta)=>-2sin(2alpha)sin(beta)#
Now, remember that: #sin(alpha+beta)=sin(alpha)cos(beta)+sin(beta)cos(alpha)#

Therefore, #sin(2alpha)=sin(alpha)cos(alpha)+sin(alpha)cos(alpha)=>sin(alpha)cos(alpha)[2]#
So we have:
#-2sin(2alpha)sin(beta)=>-2[2]sin(alpha)cos(alpha)sin(beta)# We simplify this to get: #-2[2]sin(alpha)cos(alpha)sin(beta)=>-4sin(alpha)cos(alpha)sin(beta)#

Jan 25, 2018

Please see below.

Explanation:

As #cosC-cosD=-2sin((C+D)/2)sin((C-D)/2)# ....(A)

Let #C=2alpha+beta# and #D=2alpha-beta#

then #C+D=4alpha# and #C-D=2beta#

and then (A) becomes

#cos(2alpha+beta)-cos(2alpha-beta)=-2sin2alphasinbeta#

= #-2xx2sinalphacosalphaxxsinbeta#

= #-4sinalphacosalphasinbeta#