Evaluate the integral # I = int_0^3 \ xf(x^2) \ dx #?

1 Answer
Jan 26, 2018

# int_0^3 \ xf(x^2) \ dx = 3/2#

Explanation:

We seek:

# I = int_0^3 \ xf(x^2) \ dx #

We can perform a substitution:

Let #u=x^2 => (du)/dx = 2x#

And the substitution will require a change in limits:

When #x={ (0),(3) :} => u={ (0),(9) :}#

Substituting into the integral, changing the variable of integration from #x# to #u# we get:

# I = 1/2 \ int_0^3 \ 2xf(x^2) \ dx #

# \ \ = 1/2 \ int_0^9 \ f(u) \ du #

# \ \ = 1/2 \ (3) #, as #int_0^9 \ f(u) \ du = int_0^9 \ f(x) \ dx#

# \ \ = 3/2 #