If roots of #6x^2+3x+2=0# are #a# and #b#, what is the value of #(1-a)/(1+a)+(1-b)/(1+b)#?

1 Answer
Jan 31, 2018

#(1-a)/(1+a)+(1-b)/(1+b)=8/5=1 3/5#

Explanation:

In an equation #px^2+qx+r=0#, if its roots are #a# and #b#

then #a+b=-q/p# and #ab=r/p#

As roots of #6x^2+3x+2=0# are #a# and #b#, we have

#a+b=-3/6=-1/2# and #ab=2/6=1/3#

Hence #(1-a)/(1+a)+(1-b)/(1+b)#

= #((1-a)(1+b)+(1-b)(1+a))/((1+a)(1+b))#

= #(1-a+b-ab+1-b+a-ab)/(1+a+b+ab)#

= #(2-2ab)/(1+a+b+ab)#

= #(2-2/3)/(1-1/2+1/3)#

= #((6-2)/3)/((6-3+2)/6)#

= #(4/3)/(5/6)#

= #4/3xx6/5=8/5=1 3/5#