If #sinA - cosA = 1#, then what is the value of #cosA + sinA#?
2 Answers
Feb 9, 2018
Squaring both sides:
#(sinA- cosA)^2 = 1^2#
#sin^2A - 2sinAcosA + cos^2A = 1#
#1 - 2sinAcosA = 1#
#0 = 2sinAcosA#
#0 = sin(2A)#
Now if we repeat the same thing with
#(sinA + cosA)^2 = B^2#
#sin^2A + cos^2A + 2sinAcosA= B^2#
#sin(2A) = B^2 - 1#
From the above step, recall that
#0 = B^2 - 1#
#0 = (B + 1)(B - 1)#
#B = 1 or -1#
Therefore,
Hopefully this helps!
Feb 9, 2018
Using formula