As #f(x)=-(25-x^2)^(1/2)=-sqrt(25-x^2)#, and we have
#f(1)=-(25-1)^(1/2)=-sqrt24#
then #lim_(x->1)(f(x)-f(1))/(x-1)#
= #lim_(x->1)-(sqrt(25-x^2)-sqrt24)/(x-1)#
= #lim_(x->1)-(sqrt(25-x^2)-sqrt24)/(x-1)xx(sqrt(25-x^2)+sqrt24)/(sqrt(25-x^2)+sqrt24)#
= #lim_(x->1)-(25-x^2-24)/((x-1)(sqrt(25-x^2)+sqrt24))#
= #lim_(x->1)-(1-x^2)/((x-1)(sqrt(25-x^2)+sqrt24))#
= #lim_(x->1)(1+x)/(sqrt(25-x^2)+sqrt24)#
= #lim_(x->1)(1+1)/(sqrt(25-1)+sqrt24)#
= #2/(2sqrt24)#
= #1/sqrt24=1/(2sqrt6)#