If #f(x)=-(25-x^2)^(1/2)#, find #lim_(x->1)(f(x)-f(1))/(x-1)#?

1 Answer
Feb 11, 2018

#lim_(x->1)(f(x)-f(1))/(x-1)=1/(2sqrt6)#

Explanation:

As #f(x)=-(25-x^2)^(1/2)=-sqrt(25-x^2)#, and we have

#f(1)=-(25-1)^(1/2)=-sqrt24#

then #lim_(x->1)(f(x)-f(1))/(x-1)#

= #lim_(x->1)-(sqrt(25-x^2)-sqrt24)/(x-1)#

= #lim_(x->1)-(sqrt(25-x^2)-sqrt24)/(x-1)xx(sqrt(25-x^2)+sqrt24)/(sqrt(25-x^2)+sqrt24)#

= #lim_(x->1)-(25-x^2-24)/((x-1)(sqrt(25-x^2)+sqrt24))#

= #lim_(x->1)-(1-x^2)/((x-1)(sqrt(25-x^2)+sqrt24))#

= #lim_(x->1)(1+x)/(sqrt(25-x^2)+sqrt24)#

= #lim_(x->1)(1+1)/(sqrt(25-1)+sqrt24)#

= #2/(2sqrt24)#

= #1/sqrt24=1/(2sqrt6)#