Evaluate the limit #lim_(x->0) (e^x+3x)^(1/x) #?

2 Answers
Feb 12, 2018

#e^4#

Explanation:

As we know #e^x = 1+x+O(x^2)# then

#lim_(x->0)(e^x+3x)^(1/x) = lim_(x->0)(1+x+3x+O(x^2))^(1/x) = lim_(x->0)(1+x+3x)^(1/x)#

now making #y = 4x#

#lim_(x->0) (e^x+3x)^(1/x) =lim_(y->0)(1+y)^(4/y) = (lim_(y->0)(1+y)^(1/y))^4 = e^4#

Feb 12, 2018

#lim_(x->0) (e^x+3x)^(1/x) = e^4#

Explanation:

Write the function as:

#(e^x+3x)^(1/x) = (e^(ln(e^x+3x)))^(1/x) = e^(ln(e^x+3x)/x)#

Consider now the limit:

#lim_(x->0) ln(e^x+3x)/x#

It is in the indeterminate form #0/0# so we can use l'Hospital's rule:

#lim_(x->0) ln(e^x+3x)/x = lim_(x->0) (d/dx ln(e^x+3x))/(d/dx x)#

#lim_(x->0) ln(e^x+3x)/x = lim_(x->0) (e^x+3)/(e^x+3x) = 4#

As the limit is finite and the function #e^x# is continuous for #x in RR# we have:

#lim_(x->0) e^(ln(e^x+3x)/x) = e^((lim_(x->0) ln(e^x+3x)/x)) = e^4#