How do you find the exact value of #sec(pi/12)#?
1 Answer
See below.
Explanation:
We know that
Therefore:
#sec(pi/12)= 1/cos(pi/12)#
We know that
#cos(pi/12) = cos(pi/3 - pi/4)#
The difference formula for cosine is
#cos(pi/12) = cos(pi/3)cos(pi/4) + sin(pi/3)sin(pi/4)#
#cos(pi/12) = sqrt(3)/2(1/sqrt(2)) + 1/2(1/sqrt(2))#
#cos(pi/12) = (sqrt(3) + 1)/(2sqrt(2))#
This can be rewritten as
#sec(pi/12) = (2sqrt(2))/(sqrt(3) + 1)#
Now rationalize. The conjugate of
#sec(pi/12) = (2sqrt(2))/(sqrt(3) + 1) * (sqrt(3) - 1)/(sqrt(3) - 1)#
#sec(pi/12) = (2sqrt(6) - 2sqrt(2))/(3 - 1)#
#sec(pi/12) = (2(sqrt(6 ) - sqrt(2)))/2#
#sec(pi/12) = sqrt(6) - sqrt(2)#
Hopefully this helps!