How do you evaluate the integral #int_0^oo x^2e^(-x^3) dx#?
1 Answer
Feb 16, 2018
The integral converges and gives a value of
Explanation:
We have:
#I = lim_(c -> oo) int_0^c x^2e^(-x^3)dx#
Now integrate using substitution. If we let
#I = lim_(c->oo) int_0^c x^2e^(u) -(du)/(3x^2)#
#I = lim_(c-> oo) int_0^c -1/3e^(u) du#
#I = lim_(c->oo) [-1/3e^(-x^3)]_0^c#
#I = lim_(c->oo) (-1/3e^(-c^3)) - (-1/3e^0))#
The limit to infinity of
#I = 0 + 1/3#
#I = 1/3#
Hopefully this helps!