How do you evaluate the integral #int_0^oo x^2e^(-x^3) dx#?

1 Answer
Feb 16, 2018

The integral converges and gives a value of #1/3#

Explanation:

We have:

#I = lim_(c -> oo) int_0^c x^2e^(-x^3)dx#

Now integrate using substitution. If we let #u = -x^3#, then #du = -3x^2dx# and #dx= (du)/(-3x^2)#.

#I = lim_(c->oo) int_0^c x^2e^(u) -(du)/(3x^2)#

#I = lim_(c-> oo) int_0^c -1/3e^(u) du#

#I = lim_(c->oo) [-1/3e^(-x^3)]_0^c#

#I = lim_(c->oo) (-1/3e^(-c^3)) - (-1/3e^0))#

The limit to infinity of #-1/3e^(-c^3)# is clearly #0#, because the larger the value of #c#, the closer #-1/3e^(-c^3)# gets to #0#.

#I = 0 + 1/3#

#I = 1/3#

Hopefully this helps!