#5xy-4x^2-y^2# divided by #x+y# multiplied #y^2-x^2# divided #y^2-4xy#?
rational expression
rational expression
1 Answer
with exclusions
Explanation:
Given:
#(5xy-4x^2-y^2)/(x+y) * (y^2-x^2)/(y^2-4xy)#
Note that we can reverse the sign of both of the numerators to get:
#((4x^2-5xy+y^2)(x^2-y^2))/((x+y)(y^2-4xy)) = (((4x^2-xy)-(4xy-y^2))(x-y)color(red)(cancel(color(black)((x+y)))))/(color(red)(cancel(color(black)((x+y))))(y-4x)y)#
#color(white)(((4x^2-5xy+y^2)(x^2-y^2))/((x+y)(y^2-4xy))) = ((x(4x-y)-y(4x-y))(x-y))/((y-4x)y)#
#color(white)(((4x^2-5xy+y^2)(x^2-y^2))/((x+y)(y^2-4xy))) = ((x-y)(4x-y)(x-y))/((y-4x)y)#
#color(white)(((4x^2-5xy+y^2)(x^2-y^2))/((x+y)(y^2-4xy))) = -((x-y)color(red)(cancel(color(black)((4x-y))))(x-y))/(color(red)(cancel(color(black)((4x-y))))y)#
#color(white)(((4x^2-5xy+y^2)(x^2-y^2))/((x+y)(y^2-4xy))) = -(x-y)^2/y#
with exclusions