# A charge of 5 C is at the origin. How much energy would be applied to or released from a  -2 C charge if it is moved from  ( 7, -1 )  to ( 5 , 1 ) ?

Feb 6, 2018

The energy released is $= 182.8 \cdot {10}^{9} J$

#### Explanation:

The potential energy is

$U = k \frac{{q}_{1} {q}_{2}}{r}$

The charge ${q}_{1} = 5 C$

The charge ${q}_{2} = - 2 C$

The Coulomb's constant is $k = 9 \cdot {10}^{9} N {m}^{2} {C}^{-} 2$

The distance

${r}_{1} = \sqrt{{\left(7\right)}^{2} + {\left(- 1\right)}^{2}} = \sqrt{50} m$

The distance

${r}_{2} = \sqrt{{\left(5\right)}^{2} + {\left(1\right)}^{2}} = \sqrt{26}$

Therefore,

${U}_{1} = k \frac{{q}_{1} {q}_{2}}{r} _ 1$

${U}_{2} = k \frac{{q}_{1} {q}_{2}}{r} _ 2$

$\Delta U = {U}_{2} - {U}_{1} = k \frac{{q}_{1} {q}_{2}}{r} _ 2 - k \frac{{q}_{1} {q}_{2}}{r} _ 1$

$= k \left({q}_{1} {q}_{2}\right) \left(\frac{1}{r} _ 2 - \frac{1}{r} _ 1\right)$

$= 9 \cdot {10}^{9} \cdot \left(\left(5\right) \cdot \left(- 2\right)\right) \left(\frac{1}{\sqrt{26}} - \frac{1}{50}\right)$

$= - 182.8 \cdot {10}^{9} J$

The energy released is $= 182.8 \cdot {10}^{9} J$