As the parametric form of equation of parabola y^2=4ax is (at^2,2at) all the points (at_i^2,2at_i) for i=1,2,3,4. too lie on the parabola.
As they are points of intersection of parabola and circle, they also fall on the circle i.e. (at_i^2,2at_i) for i=1,2,3,4. lie on circle. Let these points be T_1,T_2,T_3,T_4 respectively in cyclical order, as shown in the figure below.
Now T_1T_2T_3T_4 is a cyclical quadrilateral and hence
m/_T_2T_1T_4+m/_T_2T_3T_4=180^@ and tanT_1=-tanT_3(A)
To find m/_T_2T_1T_4, let us find the slopes of T_2T_1 and T_2T_4.
Slope of T_2T_1, joining (at_2^2,2at_2) and (at_1^2,2at_1) is
(2a(t_2-t_1))/(a(t_2^2-t_1^2))=2/(t_2+t_1)
and similarly slope of T_1T_4, joining (at_1^2,2at_1) and (at_4^2,2at_4) is
(2a(t_1-t_4))/(a(t_1^2-t_4^2))=2/(t_1+t_4)
Now as measure of angle between two lines with slope m_1 and m_2 is tan^(-1)((m_1-m_2)/(1+m_1m_2)), we have
tanT_1=(2/(t_2+t_1)-2/(t_1+t_4))/((1+(2/(t_2+t_1))xx(2/(t_1+t_4)))
= (2(t_1+t_4-t_2-t_1))/((t_1+t_4)(t_2+t_1)+4)=(2(t_4-t_2))/((t_1+t_4)(t_2+t_1)+4)
Similarly tanT_3=(2/(t_4+t_3)-2/(t_3+t_2))/((1+(2/(t_4+t_3))xx(2/(t_3+t_2)))
= (2(t_3+t_2-t_4-t_3))/((t_4+t_3)(t_3+t_2)+4)=(2(t_2-t_4))/((t_4+t_3)(t_3+t_2)+4)
and using (A) we get
(2(t_4-t_2))/((t_1+t_4)(t_2+t_1)+4)=-(2(t_2-t_4))/((t_4+t_3)(t_3+t_2)+4)
or (t_1+t_4)(t_2+t_1)+color(red)4=(t_4+t_3)(t_3+t_2)+color(red)4
or t_1t_2+t_1^2+color(red)(t_4t_2)+t_4t_1=t_4t_3+color(red)(t_4t_2)+t_3^2+t_3t_2
or t_1t_2+t_1^2+t_4t_1-t_4t_3-t_3^2-t_3t_2=0
or t_2(t_1-t_3)+t_4(t_1-t_3)+(t_1+t_3)(t_1-t_3)=0
and dividing by (t_1-t_3), we get
t_1+t_2+t_3+t_4=0