A line segment has endpoints at #(1 ,2 )# and #(3 ,8 )#. If the line segment is rotated about the origin by #pi /2 #, translated vertically by #1 #, and reflected about the y-axis, what will the line segment's new endpoints be?

1 Answer
May 16, 2018

#(2,2)" and "(8,4)#

Explanation:

#"since there are 3 transformations to be performed"#
#"label the endpoints"#

#A(1,2)" and "B(3,8)#

#color(blue)"First transformation"#

#"under a rotation about the origin of "pi/2#

#• " a point "(x,y)to(-y,x)#

#rArrA(1.2)toA'(-2,1)#

#rArrB(3,8)toB'*-8,3)#

#color(blue)"Second transformation"#

#"under a vertical translation "((0),(1))#

#•" a point "(x,y)to(x,y+1)#

#rArrA'(-2,1)toA''(-2,2)#

#rArrB'(-8,3)toB''(-8,4)#

#color(blue)"Third transformation"#

#"under a reflection in the y-axis"#

#• " a point "(x,y)to(-x,y)#

#rArrA''(-2,2)toA'''(2,2)#

#rArrB''(-8,4)toB'''(8,4)#

#"After all 3 transformations"#

#(1,2)to(2,2)" and "(3,8)to(8,4)#