# A plane flying horizontally at an altitude of 1 mi and speed of 500mi/hr passes directly over a radar station. How do you find the rate at which the distance from the plane to the station is increasing when it is 2 miles away from the station?

##### 1 Answer

When the plane is 2mi away from the radar station, its distance's increase rate is approximately 433mi/h.

#### Explanation:

The following image represents our problem:

P is the plane's position

R is the radar station's position

V is the point located vertically of the radar station at the plane's height

h is the plane's height

d is the distance between the plane and the radar station

x is the distance between the plane and the V point

Since the plane flies horizontally, we can conclude that PVR is a right triangle. Therefore, the pythagorean theorem allows us to know that d is calculated:

We are interested in the situation when d=2mi, and, since the plane flies horizontally, we know that h=1mi regardless of the situation.

We are looking for

We can calculate that, when d=2mi:

Knowing that the plane flies at a constant speed of 500mi/h, we can calculate: