A right cylinder is inscribed in a sphere of radius r. How do you find the largest possible volume of such a cylinder?
1 Answer
Explanation:
There are several steps to this optimization problem.
1.) Find the equation for the volume of a cylinder inscribed in a sphere.
2.) Find the derivative of the volume equation.
3.) Set the derivative equal to zero and solve to identify the critical points.
4.) Plug the critical points into the volume equation to find the maximum volume.
The best place to start is by drawing a diagram. The picture below shows the cylinder inscribed in the sphere. Given the height,
Note that
To find the volume of our cylinder, we need to multiply the area of the top by the total height of the cylinder. In other words;
This is our volume function. Next we take the derivative of the volume function and set it equal to zero. If we move the
The
After some rearranging;
Take the square root of both sides.
This is our optimized height. To find the optimized volume, we need to plug this into the volume function.
Simplify.
This is the optimized volume for the cylinder. Its a good check to notice that