The kinetic energy is
KE=1/2mv^2KE=12mv2
The mass is m=2kgm=2kg
The initial velocity is =u_1ms^-1=u1ms−1
The final velocity is =u_2 ms^-1=u2ms−1
The initial kinetic energy is 1/2m u_1^2=35000J12mu21=35000J
The final kinetic energy is 1/2m u_2^2=18000J12mu22=18000J
Therefore,
u_1^2=2/2*35000=35000m^2s^-2u21=22⋅35000=35000m2s−2
and,
u_2^2=2/2*18000=18000m^2s^-2u22=22⋅18000=18000m2s−2
The graph of v^2=f(t)v2=f(t) is a straight line
The points are (0,35000)(0,35000) and (15,18000)(15,18000)
The equation of the line is
v^2-35000=(18000-35000)/15tv2−35000=18000−3500015t
v^2=-1133.3t+35000v2=−1133.3t+35000
So,
v=sqrt(-1133.3t+35000)v=√−1133.3t+35000
We need to calculate the average value of vv over t in [0,15]t∈[0,15]
(15-0)bar v=int_0^15(sqrt(-1133.3t+35000))dt(15−0)¯v=∫150(√−1133.3t+35000)dt
15 barv= (-1133.3t+35000)^(3/2)/(3/2*-1133.3)| _( 0) ^ (15) 15¯v=(−1133.3t+35000)3232⋅−1133.3∣∣
∣∣150
=((-1133.3*15+35000)^(3/2)/(-1700))-((-1133.3*0+35000)^(3/2)/(-1700))=⎛⎝(−1133.3⋅15+35000)32−1700⎞⎠−⎛⎝(−1133.3⋅0+35000)32−1700⎞⎠
=35000^(3/2)/1700-18000^(3/2)/1700=35000321700−18000321700
=2431.1=2431.1
So,
barv=2431.1/15=162.1ms^-1¯v=2431.115=162.1ms−1
The average speed is =162.1ms^-1=162.1ms−1