The kinetic energy is
KE=1/2mv^2KE=12mv2
The mass is =2kg=2kg
The initial velocity is =u_1ms^-1=u1ms−1
The final velocity is =u_2 ms^-1=u2ms−1
The initial kinetic energy is 1/2m u_1^2=64000J12mu21=64000J
The final kinetic energy is 1/2m u_2^2=38000J12mu22=38000J
Therefore,
u_1^2=2/2*64000=64000m^2s^-2u21=22⋅64000=64000m2s−2
and,
u_2^2=2/2*38000=38000m^2s^-2u22=22⋅38000=38000m2s−2
The graph of v^2=f(t)v2=f(t) is a straight line
The points are (0,64000)(0,64000) and (15,38000)(15,38000)
The equation of the line is
v^2-64000=(38000-64000)/15tv2−64000=38000−6400015t
v^2=-17333t+64000v2=−17333t+64000
So,
v=sqrt((-1733.3t+64000)v=√(−1733.3t+64000)
We need to calculate the average value of vv over t in [0,15]t∈[0,15]
(15-0)bar v=int_0^15(sqrt(-1733.3t+64000))dt(15−0)¯v=∫150(√−1733.3t+64000)dt
15 barv=[((-1733.3t+64000)^(3/2)/(-3/2*1733.3))]_0^1515¯v=⎡⎣⎛⎝(−1733.3t+64000)32−32⋅1733.3⎞⎠⎤⎦150
=((-1733.3*15+64000)^(3/2)/(-2600))-((-1733.3*0+64000)^(3/2)/(-2600))=⎛⎝(−1733.3⋅15+64000)32−2600⎞⎠−⎛⎝(−1733.3⋅0+64000)32−2600⎞⎠
=64000^(3/2)/2600-38000^(3/2)/2600=64000322600−38000322600
=3378.2=3378.2
So,
barv=3378.2/15=225.2ms^-1¯v=3378.215=225.2ms−1
The average speed is =225.2ms^-1=225.2ms−1