#a(t)=d/(d t) v(t)" derivative of v(t) give us a(t)"#

#"derivative of v(t) for x direction:"#

#"..................................................."#

#a_x(t)=d/(d t)(t^2+t+1)#

#a_x(t)=2t+1#

#"fill in t=6"#

#a_x(6)=2*6+1=13#

#a_x(6)=13#

#"derivative of v(t) for y direction"#

#"..................................................."#

#a_y(t)=d/(d t)(t^3-3t)#

#a_y(t)=3t^2-3#

#"fill in t=6"#

#a_y(6)=3*6^2-3=3*36-3=108-3=105#

#"acceleration is a vector quantity so that we have to add " a_x and a_y " as vector"#

#a=sqrt(13^2+105^2)#

#a=sqrt(169+11025)#

#a=sqrt(11194)#

#a=105,80 " "(unit)/s^2#