#"what we have to do here is compare the distance (d)"#
#"between the centres to the sum of the radii"#
#• " if sum of radii">d" then circles overlap"#
#• " if sum of radii"< d" then no overlap"#
#"before calculating d we require to find the new centre of"#
#"B under the given translation"#
#"under the translation "< -2,6>#
#(3,2)to(3-2,2+6)to(1,8)larrcolor(red)"new centre of B"#
#"to calculate d use the "color(blue)"distance formula"#
#•color(white)(x)d=sqrt((x_2-x_1)^2+(y_2-y_1)^2)#
#"let "(x_1,y_1)=(8,3)" and "(x_2,y_2)=(1,8)#
#d=sqrt((1-8)^2+(8-3)^2)#
#color(white)(d)=sqrt(49+25)=sqrt74~~8.60#
#"sum of radii "=2+3=5#
#"since sum of radii"< d" then no overlap"#
#"minimum distance "=d-" sum of radii"#
#color(white)(xxxxxxxxxxxxxx)=8.6-5=3.6#
graph{((x-8)^2+(y-3)^2-4)((x-1)^2+(y-8)^2-9)=0 [-20, 20, -10, 10]}