#"what we have to do here is compare the distance (d)"#
#"between the centres to the sum of the radii"#
#• " if sum of radii">d" then circles overlap"#
#• " if sum of radii"< d" then no overlap"#
#"before calculating d we require to find the new centre"#
#"of B under the given translation"#
#"under the translation "<4,-1>#
#(3,8)to(3+4,8-1)to(7,7)larrcolor(red)"new centre of B"#
#"to calculate d use the "color(blue)"distance formula"#
#•color(white)(x)d=sqrt((x_2-x_1)^2+(y_2-y_1)^2)#
#"let "(x_1,y_1)=(2,5)" and "(x_2,y_2)=(7,7)#
#d=sqrt((7-2)^2+(7-5)^2)=sqrt(25+4)=sqrt29~~5.385#
#"sum of radii "=2+3=5#
#"since sum of radii"< d" then no overlap"#
#"minimum distance "=d-" sum of radii"#
#color(white)(xxxxxxxxxxxxx)=5.385-5=0.385#
graph{((x-2)^2+(y-5)^2-4)((x-7)^2+(y-7)^2-9)=0 [-20, 20, -10, 10]}